Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.

Identifieur interne : 000308 ( Main/Exploration ); précédent : 000307; suivant : 000309

Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.

Auteurs : Tingting Li [États-Unis] ; Enguo Ju [États-Unis] ; Shou-Jiang Gao [États-Unis]

Source :

RBID : pubmed:31305263

Descripteurs français

English descriptors

Abstract

Cytosolic arginine sensor for mTORC1 subunits 1 and 2 (CASTOR1 and CASTOR2) inhibit the mammalian target of rapamycin complex 1 (mTORC1) upon arginine deprivation. mTORC1 regulates cell proliferation, survival, and metabolism and is often dysregulated in cancers, indicating that cancer cells may regulate CASTOR1 and CASTOR2 to control mTORC1 signaling and promote tumorigenesis. mTORC1 is the most effective therapeutic target of Kaposi sarcoma, which is caused by infection with the Kaposi sarcoma-associated herpesvirus (KSHV). Hence, KSHV-induced cellular transformation is a suitable model for investigating mTORC1 regulation in cancer cells. Currently, the mechanism of KSHV activation of mTORC1 in KSHV-induced cancers remains unclear. We showed that KSHV suppressed CASTOR1 and CASTOR2 expression to activate the mTORC1 pathway. CASTOR1 or CASTOR2 overexpression and mTOR inhibitors abolished cell proliferation and colony formation in soft agar of KSHV-transformed cells by attenuating mTORC1 activation. Furthermore, the KSHV-encoded miRNA miR-K4-5p, and probably miR-K1-5p, directly targeted CASTOR1 to inhibit its expression. Knockdown of miR-K1-5p and -K4-5p restored CASTOR1 expression and thereby attenuated mTORC1 activation. Overexpression of CASTOR1 or CASTOR2 and mTOR inhibitors abolished the activation of mTORC1 and growth transformation induced by pre-miR-K1 and -K4. Our results define the mechanism of KSHV activation of the mTORC1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.

DOI: 10.1172/JCI127166
PubMed: 31305263
PubMed Central: PMC6668677


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.</title>
<author>
<name sortKey="Li, Tingting" sort="Li, Tingting" uniqKey="Li T" first="Tingting" last="Li">Tingting Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ju, Enguo" sort="Ju, Enguo" uniqKey="Ju E" first="Enguo" last="Ju">Enguo Ju</name>
<affiliation wicri:level="4">
<nlm:affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Shou Jiang" sort="Gao, Shou Jiang" uniqKey="Gao S" first="Shou-Jiang" last="Gao">Shou-Jiang Gao</name>
<affiliation wicri:level="4">
<nlm:affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31305263</idno>
<idno type="pmid">31305263</idno>
<idno type="doi">10.1172/JCI127166</idno>
<idno type="pmc">PMC6668677</idno>
<idno type="wicri:Area/Main/Corpus">000234</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000234</idno>
<idno type="wicri:Area/Main/Curation">000234</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000234</idno>
<idno type="wicri:Area/Main/Exploration">000234</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.</title>
<author>
<name sortKey="Li, Tingting" sort="Li, Tingting" uniqKey="Li T" first="Tingting" last="Li">Tingting Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ju, Enguo" sort="Ju, Enguo" uniqKey="Ju E" first="Enguo" last="Ju">Enguo Ju</name>
<affiliation wicri:level="4">
<nlm:affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Shou Jiang" sort="Gao, Shou Jiang" uniqKey="Gao S" first="Shou-Jiang" last="Gao">Shou-Jiang Gao</name>
<affiliation wicri:level="4">
<nlm:affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of clinical investigation</title>
<idno type="eISSN">1558-8238</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier Proteins (biosynthesis)</term>
<term>Carrier Proteins (genetics)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Transformation, Viral (MeSH)</term>
<term>Herpesvirus 8, Human (genetics)</term>
<term>Herpesvirus 8, Human (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Intracellular Signaling Peptides and Proteins (biosynthesis)</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>MicroRNAs (biosynthesis)</term>
<term>MicroRNAs (genetics)</term>
<term>RNA, Viral (biosynthesis)</term>
<term>RNA, Viral (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (biosynthèse)</term>
<term>ARN viral (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Herpèsvirus humain de type 8 (génétique)</term>
<term>Herpèsvirus humain de type 8 (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Protéines de transport (biosynthèse)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines et peptides de signalisation intracellulaire (biosynthèse)</term>
<term>Protéines et peptides de signalisation intracellulaire (génétique)</term>
<term>Transformation cellulaire virale (MeSH)</term>
<term>microARN (biosynthèse)</term>
<term>microARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Carrier Proteins</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>MicroRNAs</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>MicroRNAs</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN viral</term>
<term>Protéines de transport</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Herpesvirus 8, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Herpèsvirus humain de type 8</term>
<term>Protéines de transport</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Herpesvirus 8, Human</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Herpèsvirus humain de type 8</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Cell Transformation, Viral</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Transformation cellulaire virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cytosolic arginine sensor for mTORC1 subunits 1 and 2 (CASTOR1 and CASTOR2) inhibit the mammalian target of rapamycin complex 1 (mTORC1) upon arginine deprivation. mTORC1 regulates cell proliferation, survival, and metabolism and is often dysregulated in cancers, indicating that cancer cells may regulate CASTOR1 and CASTOR2 to control mTORC1 signaling and promote tumorigenesis. mTORC1 is the most effective therapeutic target of Kaposi sarcoma, which is caused by infection with the Kaposi sarcoma-associated herpesvirus (KSHV). Hence, KSHV-induced cellular transformation is a suitable model for investigating mTORC1 regulation in cancer cells. Currently, the mechanism of KSHV activation of mTORC1 in KSHV-induced cancers remains unclear. We showed that KSHV suppressed CASTOR1 and CASTOR2 expression to activate the mTORC1 pathway. CASTOR1 or CASTOR2 overexpression and mTOR inhibitors abolished cell proliferation and colony formation in soft agar of KSHV-transformed cells by attenuating mTORC1 activation. Furthermore, the KSHV-encoded miRNA miR-K4-5p, and probably miR-K1-5p, directly targeted CASTOR1 to inhibit its expression. Knockdown of miR-K1-5p and -K4-5p restored CASTOR1 expression and thereby attenuated mTORC1 activation. Overexpression of CASTOR1 or CASTOR2 and mTOR inhibitors abolished the activation of mTORC1 and growth transformation induced by pre-miR-K1 and -K4. Our results define the mechanism of KSHV activation of the mTORC1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31305263</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1558-8238</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>129</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of clinical investigation</Title>
<ISOAbbreviation>J Clin Invest</ISOAbbreviation>
</Journal>
<ArticleTitle>Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>3310-3323</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1172/JCI127166</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">127166</ELocationID>
<Abstract>
<AbstractText>Cytosolic arginine sensor for mTORC1 subunits 1 and 2 (CASTOR1 and CASTOR2) inhibit the mammalian target of rapamycin complex 1 (mTORC1) upon arginine deprivation. mTORC1 regulates cell proliferation, survival, and metabolism and is often dysregulated in cancers, indicating that cancer cells may regulate CASTOR1 and CASTOR2 to control mTORC1 signaling and promote tumorigenesis. mTORC1 is the most effective therapeutic target of Kaposi sarcoma, which is caused by infection with the Kaposi sarcoma-associated herpesvirus (KSHV). Hence, KSHV-induced cellular transformation is a suitable model for investigating mTORC1 regulation in cancer cells. Currently, the mechanism of KSHV activation of mTORC1 in KSHV-induced cancers remains unclear. We showed that KSHV suppressed CASTOR1 and CASTOR2 expression to activate the mTORC1 pathway. CASTOR1 or CASTOR2 overexpression and mTOR inhibitors abolished cell proliferation and colony formation in soft agar of KSHV-transformed cells by attenuating mTORC1 activation. Furthermore, the KSHV-encoded miRNA miR-K4-5p, and probably miR-K1-5p, directly targeted CASTOR1 to inhibit its expression. Knockdown of miR-K1-5p and -K4-5p restored CASTOR1 expression and thereby attenuated mTORC1 activation. Overexpression of CASTOR1 or CASTOR2 and mTOR inhibitors abolished the activation of mTORC1 and growth transformation induced by pre-miR-K1 and -K4. Our results define the mechanism of KSHV activation of the mTORC1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Tingting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ju</LastName>
<ForeName>Enguo</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Shou-Jiang</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA096512</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA124332</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA132637</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA213275</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Clin Invest</MedlineTA>
<NlmUniqueID>7802877</NlmUniqueID>
<ISSNLinking>0021-9738</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000609922">CASTOR1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000609923">CASTOR2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002472" MajorTopicYN="Y">Cell Transformation, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019288" MajorTopicYN="N">Herpesvirus 8, Human</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">AIDS/HIV</Keyword>
<Keyword MajorTopicYN="Y">Kaposi’s sarcoma</Keyword>
<Keyword MajorTopicYN="Y">Molecular biology</Keyword>
<Keyword MajorTopicYN="Y">Tumor suppressors</Keyword>
<Keyword MajorTopicYN="Y">Virology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31305263</ArticleId>
<ArticleId IdType="pii">127166</ArticleId>
<ArticleId IdType="doi">10.1172/JCI127166</ArticleId>
<ArticleId IdType="pmc">PMC6668677</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Feb;78(4):1918-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Nov;86(21):11698-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27342859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 7;45(12):7212-7225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28482037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2017 Jul;65:157-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28506734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Sep 13;2:16035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27648300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2008 Jun 15;68(12):4640-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18559509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Apr 29;12(4):e1005605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27128969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1996 Jul 25;335(4):233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8657239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11818-11825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 11;536(7615):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27487210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Feb;12(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(10):4833-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2011 May;21(5):793-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2013 Jun;3(3):266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23743127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transpl Int. 2008 Sep;21(9):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18498314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Mar 31;352(13):1317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1995 Aug 15;86(4):1276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7632932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Oncol. 2015 Apr;42(2):223-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25843728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(10):5229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20219912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Sep 24;11(9):e1005171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26402907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Mar 1;195(5):645-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17262705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(12):e1003857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transpl Int. 2016 Sep;29(9):1008-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virol. 2011;2011:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 13;450(7172):1096-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18075594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Feb;86(3):1372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Apr 17;13(4):429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Mar;122(3):1076-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2008 Mar;8(3):707-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Jan 18;91(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27852859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5570-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Stem Cell Res Ther. 2007 Dec;2(4):264-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18220910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):377-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 20;6(1):e16224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Dec 17;6(6):570-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20006845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2006 Aug;10(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16904612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2017 Sep 21;36(38):5407-5420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28534512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 May 17;12(5):e1005648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27187079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2012 Nov 15;120(20):4150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22968461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Mar 24;165(1):153-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2013 Apr 1;73(7):2235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2011 Jun 14;19(6):805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Dec 16;266(5192):1865-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7997879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université de Pittsburgh</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Li, Tingting" sort="Li, Tingting" uniqKey="Li T" first="Tingting" last="Li">Tingting Li</name>
</region>
<name sortKey="Gao, Shou Jiang" sort="Gao, Shou Jiang" uniqKey="Gao S" first="Shou-Jiang" last="Gao">Shou-Jiang Gao</name>
<name sortKey="Ju, Enguo" sort="Ju, Enguo" uniqKey="Ju E" first="Enguo" last="Ju">Enguo Ju</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000308 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000308 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31305263
   |texte=   Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31305263" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020